Rhodium(III)-Catalyzed Directed ortho-C−H Bond Functionalization of Aromatic Ketazines via C−S and C−C Coupling

Jing Wen, An Wu, Mingyang Wang, and Jin Zhu*

Department of Polymer Science and Engineering, School of [Ch](#page-5-0)emistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China

S Supporting Information

[AB](#page-5-0)STRACT: [Described he](#page-5-0)rein is a convenient and efficient method for sulfuration and olefination of aromatic ketazines via rhodium-catalyzed oxidative C−H bond activation. A range of substituted substrates are supported, and a possible mechanism is proposed according to experimental results of kinetic isotopic effect, reversibility studies, and catalysis of rhodacycle intermediate c1.

■ INTRODUCTION

Transition-metal-catalyzed directed $sp²$ C−H activation, which occurs based on directing groups, has emerged as a powerful tool for the functionalization of various arenes with advantages of step- and atom-economy, high selectivity, and efficiency, providing an alternative to traditional transformations.¹ In recent years, rhodium-catalyzed directed sp² C−H bond activation has been broadly exploited and used for its exc[el](#page-5-0)lent catalysis and good tolerance of functional groups. 2 In the catalytic activation, directing groups such as pyridine, oxime, and hydrazone, which have proved to be viable directi[ng](#page-5-0) groups with " $C=N$ " as substructure, always play an important role.³ Ketazine derivatives, most of which were used in a wide range of agricultural chemicals, medicines, and materials, have th[e](#page-6-0) generic substructure "-C=N-N=C-" that proved to be an effective directing group by Huang et al. and others.⁴ In addition, aryl sulfides, generally prepared under harsh reaction conditions with the need for prefunctionalized partners[,](#page-6-0) are common structures in natural products with biological activity widely used in medicines and materials.⁵ Therefore, on the basis of related reports and the importance of ketazines, introducing Rh-catalyzed directed C−H a[ct](#page-6-0)ivation to functionalization of ketazines with sulfides or other partners should be attractive and feasible. Herein, we report a study of sulfuration and olefination of aromatic ketazines with disulfides and acrylates catalyzed by $[RhCp^*Cl_2]_2 (Cp^* = C_5Me_5)$ as catalysts via directed C−H activation under mild conditions. This study also shows a range of substituted substrates, a possible mechanism that rhodacycle 4 is the key intermediate in the catalytic cycle, and a kinetic test which identifies the ratedetermining step for this transformation.

■ RESULTS AND DISSCUSSION

With the reaction of acetophenone azine (1a, 1.0 equiv) with diphenyl disulfide (2a, 1.2 equiv) as a model, we initiated our studies by examining the effects of several silver salts (12%)

that could activate the Rh catalyst via antichloration toward the reaction in THF (2 mL) at 60 °C for 24 h, using 1:4 [RhCp*Cl2]2 (3%) as catalyst (entries 1−5, Table 1). It suggested that silver salts played a crucial role in the reaction efficiency by the results of that the desired product 3a was not observed under conditions without silver salt[s](#page-1-0) [added,](#page-1-0) and AgOTf was optimal with product 3a in 41% yield. According to screening oxidants for the coupling, we found that oxidants were required and $Cu(OAc)_2$ worked best in the catalytic system than others (entries 6−11, Table 1). Among the set of representative solvents, DCE was found to be optimal (entries 12−15, Table 1). By increasing t[he amou](#page-1-0)nts of catalyst and silver salt, respectively, to 5 mol % and 20 mol %, the optimal conditio[ns were](#page-1-0) determined with the isolated 56% yield of product 3a (entry 16, Table 1) and used as standard conditions in the following studies. Additionally, on the basis of the effects of additives (S10, Su[pporting](#page-1-0) Information), it was found that chloride abstraction is required for catalyst turnover in the coupling with disulfi[des, and the anion of](http://pubs.acs.org/doi/suppl/10.1021/acs.joc.5b01154/suppl_file/jo5b01154_si_001.pdf) silver salts has an impact on the catalyst turnover.

With an optimized catalytic system in hand, we proceeded to evaluate the generality of the standard reaction conditions with a range of substrates, as shown in Table 2. The results showed that electron-donating substrates, affording products 3b and 3c in yields of 66% and 67%, showed [better a](#page-1-0)ctivity than electronwithdrawing substrates in the catalytic system. According to the contrast between products 3c and 3f, it suggested that parasubstituted substrates had higher efficiency than metasubstituted substrates. The lower yield of product 3g, obtained from the substrate with a phenyl substituent on ketazine, revealed the steric property that substrates with large substituents on ketazine tended to form a (Z) -configuration, which was unable to direct C−H activation.

Received: May 28, 2015 Published: September 28, 2015 Table 1. Coupling of Acetophenone Azine (1a) with Diphenyl Disulfide (2a) under Various Conditions a,b

 a Conditions: 1a (0.1 mmol, 1.0 equiv), 2a (1.2 equiv), catalyst/Ag⁺ (3 mol %/12 mol %), solvent (2 mL), 60 °C, 24 h, all the oxidants (1.0 equiv). $\frac{b}{c}$ Yields (<10%) estimated by TLC; isolated yields estimated by weighing. "Catalyst/Ag⁺ (5 mol %/20 mol %). d Catalyst/Ag⁺ (5 mol %/20 mol %), $Cu(OAc)_{2}$ (2.0 equiv).

Table 2. Coupling of Aromatic Ketazines with Disulfides a,b

 $\mathrm{^a}$ Reaction conditions presented by entry 16 in Table 1. $\mathrm{^b}$ Isolated yields given unless otherwise noted.

In addition to disulfides, acrylates also worked as a coupling partner in ortho-functionalization of aromatic ketazines and emerged more efficient than disulfides under the conditions without silver salt in MeCN (2 mL) at 40/55 °C for 12 h (Table 3). In these reactions, substrates bearing diverse

Table 3. Coupling of Aromatic Ketazines with Alkenes^{a,b,c}

^aConditions: 1 (0.1 mmol, 1.0 equiv), 2 (1.2 equiv), $\left[\text{RhCp*Cl}_2\right]_2$ (3 mol %), MeCN (2 mL), 40 °C/55 °C, 12 h, Cu(OAc) $_2$ (2.0 equiv) as α idant. β Only the (E)-configuration afforded, isolated yields given.

configuration afforded, isolated yields given. ^cAll products obtained at 40 °C, except for 3a, 3l–3n, and 3s obtained at 55 °C.

substituents at different positions all coupled smoothly with acrylates, affording products 3i−3s in yields of 60−87%. Like the coupling with disulfides, the coupling with acrylates also showed effects of electronic property, steric property, and substituted position. Electron-donating and *para-substituted* substrates were converted preferentially in the catalytic system compared with others. Substrates with large substituents on ketazine gave products 3o and 3p in lower yields of 73% and 60%. In all these cases, only the (E) -configuration of products was observed. Clearly, all of the coupling reactions via C−H activation occurred at the ortho-position on aryl, which demonstrated the key role of the directing group. In contrast, benzylidene azine as substrate failed to deliver a sulfuration or olefination product, which probably revealed that the long distance between the directing N atom and C atom on the activation site, which resulted from bond angles, blocked metalation–cyclization of the substrate with the Rh catalyst.⁶

Subsequently, mechanism experiments were carried out with disulfides as a template. On the basis of the competiti[on](#page-6-0) experiment, the chemoselectivity of the rhodium catalysis was further understood. Essentially, in accord with yield data of products, the result that the electron-donating substituted substrate was converted preferentially to product 3b revealed

the effect of the electronic property (Scheme 1). The result also suggested that C−H activation probably followed the electrophilic aromatic substitution (EAS) rather than concerted metalation−deprotonation.⁷

^aThe substrate ratio was determined to be 1:1. ^bPercentage in bracket estimated by ¹H NMR meaning the proportion of each product in total, not the yield.

Further mechanistic studies showed that the kinetic isotope effect (KIE), which was measured to be 2.7 by using two parallel reactions, revealed a reaction involving a rate-limiting C−H bond activation (Scheme 2a).⁸ Additionally, an H/D

exchange experiment, under the standard conditions with CD_3OD/D_2O as proton donor and in the absence of diphenyl disulfide, was carried out to examine the reversibility of C−H activation. By the results that H/D exchange of substrate 1a was remarkably observed, C−H activation was determined to be reversible (Scheme 2b). Similarly, under the standard conditions with CD_3OD/D_2O added, H/D exchange of product 3a was also observed, which revealed the reversibility of migratory insertion of the S−S bond into the C−Rh bond (Scheme 2b) (note that some deuterium protons (D_b) of 3a- d_n resulted from Rh-catalyzed C−H activation rather than migratory insertion).

Under the satndard conditions in the absence of diphenyl disulfide and additives, the rhodacycle c1 was afforded by the reaction of the Rh catalyst with acetophenone azine (Scheme

3). Subsequently, we examined the catalysis of rhodacycle c1 in the reaction (Scheme 3). Because of the fact that the process of

^aHOAc as proton donor for the loss of HCl resulting from isolating c1.

separating rhodacycle c1 resulted in a lack of protons, the reaction system with rhodacycle c1 instead of $[RhCp*Cl₂]$ requested HOAc for proton supplement, which afforded product 3a in 38% yield. Surprisingly, the reaction afforded product 3a as well with only rhodacycle c1 subjected to the standard conditions instead of $[RhCp*Cl_2]_2$, and the yield of 3a in this reaction was consistent with it in a typical reaction. Under this, we inferred that the PhS[−] fragment, which was delivered by cleavage of the S−S bond, could combine Rh(III) rather than a proton to form the phenylthio-coordination Rh complex.

On the basis of these studies, a reasonable catalytic cycle for diphenyl disulfide sketched in Scheme 4 is proposed. We

Scheme 4. Mechanism Proposal^a

^aIn the catalytic cycle, due to the rate-determining step, $[Rh(III)Cp^*]$ - (OTf) ₂ is formed first, and then it reacts with substrate 1a to form the rhodacycle intermediate 4. In contrast, in the mechanism experiment, as the previously prepared compound c1 is separately subjected to catalytic system, the rhodacycle 4 could be formed from compound c1 and AgOTf.

hypothesize that a proposed catalytic cycle initiates with the formation of the rhodacycle intermediate 4 via Rh(III) catalyzed C−H activation.⁹ After the disulfide combines with Rh(III) by coordination, with formation of a C−S bond and a S−Rh bond, product 3a an[d](#page-6-0) Rh(III) complex 6 are delivered by insertion of the S−S bond into the C−Rh bond. The Rh(III) complex 6 proceeds with catalysis toward the coupling reaction

to form the rhodacycle 7 via C−H activation. Then, another molecule of 3a and Rh(I)Cp* are formed from rhodacycle intermediate 7 by reductive elimination.¹⁰ Finally, $Rh(I)$ is oxidized to $Rh(III)$ by external oxidant $Cu(OAc)_{2}$. In this catalytic cycle, 1 equiv of disulfide 2a is c[onv](#page-6-0)erted into 2 equiv of product 3a with just 1 equiv of $Cu(OAc)_2$ required, demonstrating that there is little difference in yield between 1 and 2 equiv of $Cu(OAc)_{2}$ employed (entries 16, 17, Table 1). In addition, according to the study on balance of the materials (S8−S10, Supporting Information), we identified [R[h\]/AgOT](#page-1-0)f as the key role that the stalled reaction with other materials remaining[, which resulted from in](http://pubs.acs.org/doi/suppl/10.1021/acs.joc.5b01154/suppl_file/jo5b01154_si_001.pdf)activation of the Rh catalyst, can be restarted by fresh [Rh]/AgOTf.

■ CONCLUSION

In summary, we have developed an effective methodology to achieve the direct ortho-functionalization of aromatic ketazines with aryl disulfides and acrylates via Rh-catalyzed C−H activation and studied the mechanism for C−S coupling in some detail by experiments of KIE, H−D exchange, substrate competition, and catalysis of Rh(III) complex intermediate c1. This methodology, which, especially for ortho-olefination of aromatic ketazines, is attractive with the low loading of Rh catalyst, mild reaction temperature, high yield, and only the (E)-configuration of products obtained, supports a range of differently substituted substrates and shows good chemoselectivity. Morever, the method for ortho-olefination exhibits tolerance of mono- or diolefination. The above features should lead to many applications, especially derivation and modification of aromatic organics with the generic " $C=N$ " as substructure.

EXPERIMENTAL SECTION

General Information. All reagents and solvents were purchased from commercial sources and used without further purification unless otherwise stated. HPLC grade DCE and MeCN were used directly. $[RhCp*Cl₂]$ ₂ was purchased from commercial sources, stored, and weighed in an argon-filled glovebox. AgOTf was purchased from commercial sources and also stored and manipulated in the glovebox. All other chemicals were obtained from local suppliers or synthesized according to the literature procedures. ${}^{1}H, {}^{13}C$ NMR spectra were recorded in DMSO- d_6 or CDCl₃ (with tetramethylsilane as internal standard) solution on a 500/300 MHz NMR spectrometer. Highresolution mass spectra were obtained via ESI/EI mode with a TOF mass analyzer. Column chromatography was performed on silica gel (300−400 mesh) using ethyl acetate (EA)/petroleum ether (PE).

Preparation of Alkyl Disulfides and Alkenes. Alkyl disulfides and alkenes were purchased from commercial sources and used without further purification.

Preparation of Aromatic Ketazines 1a−1k. Aromatic ketazines 1a−1k were prepared following a published procedure.¹¹

(1E,2E)-1,2-Bis(1-phenylethylidene)hydrazine 1a.¹² Bright yellow solid, 1.77 g, 75% yield; (PE/EtOAc 20:1, R_f 0.67); ¹[H](#page-6-0) NMR (500 MHz, CDCl3), δ (ppm): 7.89−7.92 (m, 4H), 7.38−7[.43](#page-6-0) (m, 6H), 2.31 (s, 6H); 13C NMR (126 MHz, CDCl3), δ (ppm): 157.8, 138.5, 129.7, 128.4, 126.7, 15.1; MS (EI), m/z (% relative intensity): 236.1 ([M]⁺, , 29), 221.1 ($[M - CH_3]^+$, 100).

 $(1E,$ 2E)-1,2-Bis(1-(p-tolyl)ethylidene)hydrazine 1**b**.¹² Bright yellow solid, 2.06 g, 78% yield; (PE/EtOAc 20:1, R_f 0.57); ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.80–7.81 (m, 4H), 7.20–7.[22](#page-6-0) (m, 4H), 2.38 $(s, 6H)$, 2.29 $(s, 6H)$; ¹³C NMR (126 MHz, CDCl₃), δ (ppm): 157.8, 139.7, 135.9, 129.1, 126.6, 21.4, 15.0; MS (EI), m/z (% relative intensity): 264.1 ([M]⁺, 28), 249.0 ([M – CH₃]⁺, 100).

(1E,2E)-1,2-Bis(1-(4-methoxyphenyl)ethylidene)hydrazine 1c.¹² Yellow solid, 1.95 g, 66% yield; (PE/EtOAc 20:1, R_f 0.21); ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.86–7.89 (m, 4H), 6.93–6[.95](#page-6-0) (m, 4H), 3.85 (s, 6H), 2.32 (s, 6H); ¹³C NMR (126 MHz, CDCl₃), δ (ppm): 160.8, 157.4, 131.4, 128.1, 113.7, 55.4, 14.8; MS (EI), m/z (% relative intensity): 296.1 ($[M]^+$, 50), 281.0 ($[M - CH_3]^+$, 100).

(1E,2E)-1,2-Bis(1-(4-chlorophenyl)ethylidene)hydrazine 1d.¹² Light yellow solid, 2.03 g, 68% yield; (PE/EtOAc 20:1, R_f 0.64); $^1\mathrm{H}$ NMR (500 MHz, CDCl₃), δ (ppm): 7.83–7.85 (m, 4H), 7.37–7[.39](#page-6-0) $(m, 4H)$, 2.30 $(s, 6H)$; ¹³C NMR (126 MHz, CDCl₃), δ (ppm): 151.3, 136.8, 135.8, 128.6, 128.0, 14.9; MS (EI), m/z (% relative intensity): 306.0 ($[M + 2]^+$, 1), 304.0 ($[M]^+$, 7), 291.0 ($[M + 2 - CH_3]^+$, 34), 288.9 ([M – CH₃]⁺, 100).

(1E,2E)-1,2-Bis(1-(4-fluorophenyl)ethylidene)hydrazine 1e. 12 Bright yellow solid, 1.72 g, 63% yield; (PE/EtOAc 20:1, R_f 0.53); ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.88–7.92 (m, 4H), 7.07– 7.11 (m, 4H), 2.31 (s, 6H); ¹³C NMR (126 MHz, CDCl₃), δ (ppm): 163.8 (d, J = 250.6 Hz, CF), 157.4, 134.6, 128.6 (d, J = 7.6 Hz, CN), 115.3 (d, J = 21.4 Hz, CH), 15.0; MS (EI), m/z (% relative intensity): 272.0 ([M]⁺, 28), 257.0 ([M – CH₃]⁺, 100).

(1E,2E)-1,2-Bis(1-(3-methoxyphenyl)ethylidene)hydrazine 1f.¹³ Bright yellow solid, 1.56 g, 53% yield; (PE/EtOAc 20:1, R_f 0.32); ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.51–7.52 (m, 2H), 7.43– 7.46 (m, 2H), 7.32 (t, J = 8.0 Hz, 2H), 6.95−6.97 (m, 2H), 3.85 (s, 6H), 2.29 (s, 6H); ¹³C NMR (126 MHz, CDCl₃), δ (ppm): 159.7, 157.3, 139.9, 129.3, 119.3, 115.7, 111.7, 55.4, 15.2; MS (EI), m/z (% relative intensity): 296.1 ($[M]^+$, 31), 281.1 ($[M - CH_3]^+$, 100).

(1E,2E)-1,2-Bis(1-(3-chlorophenyl)ethylidene)hydrazine 1g. Yellow solid, 1.43 g, 48% yield; (PE/EtOAc 20:1, R_f 0.68); ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.90–7.92 (m, 2H), 7.75–7.77 (m, 2H), 7.37−7.40 (m, 2H), 7.33−7.36 (m, 2H), 2.30 (s, 6H); 13C NMR (126 MHz, CDCl3), δ (ppm): 157.3, 140.0, 134.5, 129.7, 129.6, 126.8, 124.8, 15.1; MS (EI), m/z (% relative intensity): 306.0 ([M + 2]⁺, 1), 304.0 ([M]⁺, 8), 291.0 ([M + 2 – CH₃]⁺, 32), 288.9 ([M – CH₃]⁺ , 100). Anal. Calcd for C₁₆H₁₄Cl₂N₂: C, 62.97; H, 4.62; Cl, 23.23; N, 9.18. Found: C, 63.06; H, 4.56; Cl, 23.44; N, 8.94.

(1E,2E)-1,2-Bis(1-(2-fluorophenyl)ethylidene)hydrazine 1h. White solid, 1.52 g, 56% yield; (PE/EtOAc 20:1, R_f 0.39); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 7.73–7.76 (m, 2H), 7.49–7.53 (m, 2H), 7.29−7.33 (m, 4H), 2.23 (s, 6H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 160.6 (d, J = 250.6 Hz, CF), 155.5, 131.9 (d, J = 7.6 Hz, CH), 130.3, 127.1 (d, J = 11.3 Hz, CH), 125.0, 116.8 (d, J = 22.7 Hz, CH), 18.4; MS (EI), m/z (% relative intensity): 272.1 ([M]⁺, 50), 257.0 $([M - CH₃]⁺, 100)$. Anal. Calcd for $C_{16}H_{14}F_2N_2$: C, 70.58; H, 5.18; F, 13.95; N, 10.29. Found: C, 70.38; H, 4.96; F, 14.52; N, 10.14.

1,2-Bis(diphenylmethylene)hydrazine $1i^{12}$ White solid, 1.88 g, 52% yield; (PE/EtOAc 20:1, R_f 0.46); ¹H NMR (500 MHz, DMSO d_6), δ (ppm): 7.45−7.50 (m, 5H), 7.34−7[.42](#page-6-0) (m, 10H), 7.29−7.31 (m, 5H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 159.5, 137.9, 135.6, 130.4, 129.4, 129.3, 128.8, 128.5; MS (EI), m/z (% relative intensity): 283.1 ([M – Ph]⁺, 100), 180.1 ([M – Ph₂CN]⁺, 41).

(1E,2E)-1,2-Bis(3,4-dihydronaphthalen-1(2H)-ylidene)hydrazine 1*j.*¹² Yellow solid, 1.45 g, 50% yield; (PE/EtOAc 20:1, R_f 0.58); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 8.16–8.18 (m, 2H), 7.32– 7.[35](#page-6-0) (m, 2H), 7.23−7.28 (m, 4H), 2.80 (t, J = 6.0 Hz, 4H), 2.69 (t, J = 6.0 Hz, 4H), 1.81–1.86 (m, 4H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 157.0, 141.0, 132.8, 130.1, 129.2, 126.7, 125.4, 29.6, 27.3, 22.2; MS (EI), m/z (% relative intensity): 288.1 ([M]⁺, 100), 259.1 (32).

(1E,2E)-1,2-Dibenzylidenehydrazine 1k.¹⁴ Bright yellow solid, 1.56 g, 75% yield; (PE/EtOAc 20:1, R_f 0.66); ¹H NMR (500 MHz, CDCl₃), δ (ppm): 8.65 (s, 2H), 7.82–7.[84](#page-6-0) (m, 4H), 7.40–7.44 (m, 6H); ¹³C NMR (126 MHz, CDCl₃), δ (ppm): 162.1, 134.2, 131.3, 128.9, 128.7; MS (ESI), m/z : [M + H]⁺ 209.3.

General Procedures for Synthesis of 3a-3h. To a 13 × 150 mm test tube equipped with magnetic stirrer were added 1a (23.7 mg, 0.1 mmol, 1.0 equiv), 2a (26.1 mg, 0.12 mmol, 1.2 equiv), AgOTf (5.1 mg, 0.02 mmol, 20%), and $Cu(OAc)_2$ (20.0 mg, 0.1 mmol, 1.0 equiv). The test tube was transferred to a glovebox, and then $[RhCp*Cl_2]_2$ (3.1 mg, 0.005 mmol, 5%) was further added. The test tube was sealed with a rubber septum and removed from the glovebox. A DCE (2 mL) solution was injected into the test tube via syringe. The reaction mixture was placed in a preheated oil bath and stirred for 24 h at 60 °C, during which time a constant checking by TLC was performed.

Subsequently, the reaction mixture was filtered over Celite. The solvent was then removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel with 15:1 PE/ EtOAc as the eluent to afford the product 3a in 56.4% yield as a yellow solid. Experimental procedures for synthesizing 3b−3h were the same as that for product 3a.

(1E,2E)-1-(1-Phenylethylidene)-2-(1-(2-(phenylthio)phenyl)ethylidene)hydrazine 3a. Yellow solid, 19.4 mg, 56% yield; (PE/EtOAc 15:1, R_f 0.62); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 7.90–7.93 (m, 2H), 7.60−7.62 (m, 1H), 7.46−7.47 (m, 3H), 7.32−7.42 (m, 7H), 7.10−7.12 (m, 1H), 2.28 (s, 3H), 2.27 (s, 3H); 13C NMR (126 MHz, DMSO- d_6), δ (ppm): 159.6, 158.2, 140.1, 138.3, 135.7, 135.5, 132.6, 131.3, 130.3, 130.1, 129.9, 129.5, 128.9, 128.3, 127.1, 18.5, 15.5. One signal is missing due to overlap; MS (ESI), m/z : [M + H]⁺ 345.3, [M + Na]⁺ 367.3; HRMS (ESI), m/z : $[M + H]^{+}$ calculated for $C_{22}H_{21}N_{2}S$: 345.1420, found 345.1416.

(1E,2E)-1-(1-(4-Methyl-2-(phenylthio)phenyl)ethylidene)-2-(1-(ptolyl)ethylidene)hydrazine 3b. Yellow solid, 24.6 mg, 66% yield; (PE/ EtOAc 15:1, R_f 0.66); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 7.81 $(d, J = 8.0 \text{ Hz}, 2\text{H}), 7.50 (d, J = 8.0 \text{ Hz}, 1\text{H}), 7.33–7.42 (m, 5\text{H}), 7.27$ $(d, J = 8.0 \text{ Hz}, 2\text{H}), 7.17 (d, J = 8.0 \text{ Hz}, 1\text{H}), 6.95 (s, 1\text{H}), 2.36 (s,$ 3H), 2.26 (s, 3H), 2.24 (s, 3H), 2.22 (s, 3H); 13C NMR (126 MHz, DMSO-d6), δ (ppm): 159.6, 158.2, 140.0, 139.4, 137.7, 136.0, 135.6, 135.0, 132.2, 131.8, 130.1, 129.51, 129.46, 128.1, 128.0, 127.0, 21.4, 21.2, 18.5, 15.4; MS (ESI), m/z: [M + H]+ 373.3, [M + Na]+ 395.3; HRMS (ESI), m/z : $[M + H]^+$ calculated for $C_{24}H_{25}N_2S$: 373.1733, found 373.1728;

(1E,2E)-1-(1-(4-Methoxy-2-(phenylthio)phenyl)ethylidene)-2-(1- (4-methoxyphenyl)ethylidene)hydrazine 3c. Yellow solid, 27.1 mg, 67% yield; (PE/EtOAc 15:1, R_f 0.51); ¹H NMR (500 MHz, DMSO d_6), δ (ppm): 7.94 (d, J = 9.0 Hz, 2H), 7.66 (d, J = 8.5 Hz, 1H), 7.46– 7.52 (m, 5H), 7.06 (d, J = 9.0 Hz, 2H), 6.93 (dd, J = 8.5, 2.5 Hz, 1H), 6.49 (d, J = 2.0 Hz, 1H), 3.87 (s, 3H), 3.69 (s, 3H), 2.38 (bs, 6H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 161.2, 160.0, 159.8, 158.7, 138.7, 135.1, 133.9, 131.3, 131.1, 130.9, 130.2, 128.9, 128.6, 115.6, 114.2, 111.3, 55.7, 55.6, 17.8, 15.6; MS (ESI), m/z : $[M + H]^+$ 405.4, $[M + Na]^+$ 427.3; HRMS (ESI), m/z : $[M + H]^+$ calculated for $C_{24}H_{25}N_2O_2S: 405.1631$, found 405.1626.

(1E,2E)-1-(1-(4-Chloro-2-(phenylthio)phenyl)ethylidene)-2-(1-(4 chlorophenyl)ethylidene)hydrazine 3d. Yellow solid, 23.4 mg, 58% yield; (PE/EtOAc 15:1, R_f 0.55); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 8.00 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.51−7.59 (m, 7H), 7.41 (dd, J = 8.5, 2.0 Hz, 1H), 6.93 (s, 1H), 2.38 (s, 3H), 2.37 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆), δ (ppm): 159.2, 158.0, 139.7, 137.0, 136.9, 135.2, 134.4, 134.2, 134.0, 131.2, 130.5, 129.5, 128.9, 128.8, 128.5, 126.1, 18.0, 15.6; MS (ESI), m/z: [M + H]+ 413.2; HRMS (ESI), m/z : [M + H]⁺ calculated for C₂₂H₁₉Cl₂N₂S: 413.0641, found 413.0635.

(1E,2E)-1-(1-(4-Fluoro-2-(phenylthio)phenyl)ethylidene)-2-(1-(4 fluorophenyl)ethylidene)hydrazine 3e. Yellow solid, 17.6 mg, 45% yield; (PE/EtOAc 15:1, R_f 0.46); ¹H NMR (500 MHz, DMSO-d₆), δ $(ppm): 8.03-8.06$ (m, 2H), 7.76 (dd, J = 8.5, 6.0 Hz, 1H), 7.50–7.57 $(m, 5H)$, 7.35 $(t, J = 8.5 Hz, 2H)$, 7.19 $(td, J = 8.5, 2.5 Hz, 1H)$, 6.67 $(dd, J = 10.5, 2.5 Hz, 1H), 2.40 (s, 3H), 2.38 (s, 3H); ¹³C NMR (126$ MHz, DMSO- d_6), δ (ppm): 163.7 (d, J = 248.2 Hz, CF), 162.5 (d, J = 248.9 Hz, CF), 159.3, 158.1, 140.4 (d, J = 7.8 Hz, CH), 134.7 (d, J = 2.1 Hz, CH), 134.5, 134.3, 134.0, 131.7 (d, J = 8.8 Hz, CH), 130.5, 129.5, 129.4, 115.9, 115.7, 115.5, 113.2 (d, J = 21.7 Hz, CH), 18.0, 15.7; MS (ESI), m/z : $[M + H]^+$ 381.3, $[M + Na]^+$ 403.2; HRMS (ESI), m/z : $[M + H]^+$ calculated for $C_{22}H_{19}F_2N_2S$: 381.1232, found 381.1227.

(1E,2E)-1-(1-(5-Methoxy-2-(phenylthio)phenyl)ethylidene)-2-(1- $(3$ -methoxyphenyl)ethylidene)hydrazine **3f**. Yellow solid, 21.5 mg, 53% yield; (PE/EtOAc 15:1, R_f 0.41); ¹H NMR (500 MHz, DMSO d_6), δ (ppm): 7.29–7.43 (m, 6H), 7.13–7.22 (m, 4H), 7.02–7.05 (m, 2H), 3.84 (s, 3H), 3.80 (s, 3H), 2.18 (s, 3H), 2.09 (s, 3H); 13C NMR $(126 \text{ MHz}, \text{ DMSO-}d_6)$, δ (ppm): 159.7, 159.3, 157.3, 144.9, 139.7, 138.2, 136.6, 130.0, 129.7, 129.0, 126.7, 122.6, 119.5, 116.12, 116.06, 115.0, 112.0, 56.0, 55.6, 19.3, 15.3. One signal is missing due to overlap; MS (ESI), m/z : $[M + H]^+$ 405.5, $[M + Na]^+$ 427.5; HRMS

(ESI), m/z : $[M + H]^+$ calculated for $C_{24}H_{25}N_2O_2S$: 405.1631, found 405.1627.

(E)-1-(Diphenylmethylene)-2-(phenyl(2-(phenylthio)phenyl) methylene)hydrazine 3g. Yellow solid, 21.0 mg, 44% yield; (PE/ EtOAc 15:1, R_f 0.56); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 7.72−7.80 (m, 5H), 7.62 (t, J = 7.5 Hz, 3H), 7.38−7.54 (m, 13H), 7.33–7.35 (m, 3H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 159.5, 137.9, 137.5, 135.6, 133.2, 130.4, 130.1, 129.4, 129.3, 129.0, 128.8, 128.5. Some signals are missing due to overlap; MS (ESI), m/z : $[M + H]$ ⁺ 469.3, $[M + Na]$ ⁺ 491.3; HRMS (ESI), m/z : $[M + H]$ ⁺ calculated for $C_{32}H_{25}N_{2}S: 469.1733$, found 469.1726.

(1E,2E)-1-(1-(2-((4-Chlorophenyl)thio)phenyl)ethylidene)-2-(1 phenylethylidene)hydrazine 3h. Yellow solid, 20.5 mg, 56% yield; $(PE/EtOAc 15:1, R_f 0.48);$ ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 7.95−7.97 (m, 2H), 7.67−7.68 (m, 1H), 7.50−7.52 (m, 5H), 7.40− 7.43 (m, 4H), 7.19−7.21 (m, 1H), 2.33 (s, 3H), 2.31 (s, 3H); 13C NMR (126 MHz, DMSO- d_6), δ (ppm): 159.6, 158.4, 140.3, 138.2, 135.1, 134.8, 134.0, 133.0, 131.6, 130.4, 130.1, 129.6, 128.9, 127.4, 127.1, 18.5, 15.5; MS (ESI), m/z : $[M + H]^+$ 379.3, $[M + Na]^+$ 401.3; HRMS (ESI), m/z : $[M + H]^+$ calculated for $C_{22}H_{20}CIN_2S$: 379.1030, found 379.1026.

General Procedures for Synthesis of 3i−3s. To a 13 × 150 mm test tube equipped with magnetic stirrer was added 1a (23.7 mg, 0.1 mmol, 1.0 equiv) and $Cu(OAc)₂$ (40.0 mg, 0.2 mmol, 2.0 equiv). The test tube was transferred to a glovebox, and then $[RhCp*Cl₂]₂$ (1.9 mg, 0.003 mmol, 3%) was further added. The test tube was sealed with a rubber septum and removed from the glovebox. A MeCN (2 mL) solution of $2a$ (10.9 μ L, 0.12 mmol, 1.2 equiv) was injected into the test tube via syringe. The reaction mixture was placed in a preheated oil bath and stirred for 12 h at 40 °C, during which time a constant checking by TLC was performed. Subsequently, the reaction mixture was filtered over Celite. The solvent was then removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel with 8:1 PE/EtOAc as the eluent and triethylamine in a small amount as stabilizer to afford the product 3i in 78.2% yield as a yellow solid. Experimental procedures for synthesizing 3j−3s were the same as that for product 3i.

Methyl (E)-3-(2-((E)-1-(((E)-1-Phenylethylidene)hydrazono)ethyl) phenyl)acrylate 3*i*. Yellow solid, 24.7 mg, 77% yield; (PE/EtOAc 8:1, R_f 0.59); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 8.08 (d, J = 16.0 Hz, 1H), 7.94–7.96 (m, 2H), 7.86 (d, J = 7.5 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.48–7.56 (m, 5H), 6.54 (d, J = 16.0 Hz, 1H), 3.72 (s, 3H), 2.31 (s, 3H), 2.29 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆), δ (ppm): 167.1, 160.1, 158.9, 144.6, 140.4, 138.2, 132.8, 130.5, 130.4, 129.6, 129.1, 128.9, 128.1, 127.1, 118.7, 51.9, 19.0, 15.4; MS (E.I.), m/ z: $[M]^{•+}$ 320.2, $[M - CH_3CO_2]^{•+}$ 261.2; HRMS (EI), m/z : $[M]^{+}$ calculated for $C_{20}H_{20}N_2O_2$: 320.1525, found 320.1528.

Methyl (E)-3-(5-Methyl-2-((E)-1-(((E)-1-(p-tolyl)ethylidene) hydrazono)ethyl)phenyl)acrylate 3j. Yellow solid, 30.1 mg, 87% yield; (PE/EtOAc 8:1, R_f 0.61); ¹H NMR (300 MHz, DMSO- d_6), δ (ppm): 8.07 (d, $J = 15.9$ Hz, 1H), 7.84 (d, $J = 8.4$ Hz, 2H), 7.67 (s, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 6.50 (d, J = 15.9 Hz, 1H), 3.71 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H), 2.30 (s, 3H), 2.25 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 167.2, 160.1, 159.0, 145.0, 140.1, 139.2, 137.7, 135.6, 132.7, 131.1, 129.5, 129.1, 128.5, 127.1, 118.3, 51.9, 21.4, 21.2, 18.7, 15.2; MS $(E.I.), m/z: [M]$ ^{*} 348.1, $[M - CH_3CO_2]$ ^{*} 289.2; HRMS (EI), m/z : $[M]^{+}$ calculated for $C_{22}H_{24}N_{2}O_{2}$: 348.1838, found 348.1833.

Methyl (E)-3-(5-Chloro-2-((E)-1-(((E)-1-(4-chlorophenyl)ethylidene)hydrazono)ethyl)phenyl)acrylate 3k. Yellow oil, 29.5 mg, 76% yield; (PE/EtOAc 8:1, R_f 0.55); ¹H NMR (300 MHz, DMSO d_6), δ (ppm): 7.94–8.01 (m, 4H), 7.68 (d, J = 8.4 Hz, 1H), 7.52–7.60 $(m, 3H)$, 6.64 (d, J = 16.2 Hz, 1H), 3.72 (s, 3H), 2.30 (s, 3H), 2.26 (s, 3H); ¹³C NMR (76 MHz, DMSO- d_6), δ (ppm): 166.8, 159.6, 158.2, 143.1, 138.7, 136.8, 135.1, 134.9, 134.3, 130.9, 130.0, 128.9, 127.7, 120.0, 51.9, 18.7, 15.2. One signal is missing due to overlap; MS (E.I.), $m/z: [M]^{\bullet+}$ 388.0, $[M - CH_3CO_2]^{\bullet+}$ 329.0; HRMS (EI), $m/z: [M]^+$ calculated for $C_{20}H_{18}Cl_2N_2O_2$: 388.0745, found 388.0742.

Methyl (E)-3-(5-Fluoro-2-((E)-1-(((E)-1-(4-fluorophenyl)ethylidene)hydrazono)ethyl)phenyl)acrylate 3l. Yellow oil, 22.7 mg,

64% yield; (PE/EtOAc 8:1, R_f 0.49); ¹H NMR (300 MHz, DMSO-d₆), δ (ppm): 7.98–8.04 (m, 3H), 7.69–7.77 (m, 2H), 7.39 (td, J = 8.5, 2.6 Hz, 1H), 7.30 (t, $J = 8.8$ Hz, 2H), 6.64 (d, $J = 15.9$ Hz, 1H), 3.72 (s, 3H), 2.31 (s, 3H), 2.28 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 167.0, 163.7 (d, J = 248.0 Hz), 162.5 (d, J = 247.3 Hz), 159.8, 158.4, 143.3, 136.9, 135.4 (d, J = 8.2 Hz), 134.7, 131.5 (d, J = 8.4 Hz), 129.5 (d, J = 8.4 Hz), 120.1, 117.3 (d, J = 21.6 Hz), 115.8 (d, J = 21.7 Hz), 114.6 (d, J = 22.7 Hz), 52.0, 18.9, 15.4; MS (E.I.), m/z : [M]^{••} 356.1, $[M - CH_3CO_2]^{\bullet+}$ 297.1; HRMS (EI), m/z : $[M]^+$ calculated for $C_{20}H_{18}F_2N_2O_2$: 356.1336, found 356.1339.

Methyl (E)-3-(4-Chloro-2-((E)-1-(((E)-1-(3-chlorophenyl)ethylidene)hydrazono)ethyl)phenyl)acrylate 3m. Yellow oil, 22.9 mg, 59% yield; (PE/EtOAc 8:1, R_f 0.45); ¹H NMR (300 MHz, DMSO- d_6), δ (ppm): 7.87−8.01 (m, 4H), 7.73 (s, 1H), 7.48−7.56 (m, 3H), 6.56 $(d, J = 15.9 \text{ Hz}, 1\text{H}), 3.71 \text{ (s, 3H)}, 2.29 \text{ (s, 3H)}, 2.26 \text{ (s, 3H)}; \text{ }^{13}\text{C}$ NMR (126 MHz, DMSO- d_6), δ (ppm): 167.0, 159.2, 157.8, 143.1, 141.8, 140.1, 135.0, 133.9, 131.7, 130.8, 130.3, 130.0, 129.6, 128.8, 126.7, 125.9, 119.5, 52.0, 18.9, 15.4; MS (E.I.), m/z: [M]•⁺ 388.0, [M $-$ CH₃CO₂]^{•+} 329.0; HRMS (EI), m/z : [M]⁺ calculated for $C_{20}H_{18}Cl_2N_2O_2$: 388.0745, found 388.0751.

Methyl (E)-3-(3-Fluoro-2-((E)-1-(((E)-1-(2-fluorophenyl)ethylidene)hydrazono)ethyl)phenyl)acrylate 3n. Yellow oil, 21.8 mg, 62% yield; (PE/EtOAc 8:1, R_f 0.41); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 7.75−7.81 (m, 3H), 7.50−7.56 (m, 2H), 7.41 (t, J = 9.0 Hz, 1H), 7.30−7.34 (m, 2H), 6.68 (d, J = 15.5 Hz, 1H), 3.73 (s, 3H), 2.24 (s, 3H), 2.19 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 166.7, 160.5 (d, J = 249.5 Hz), 160.3 (d, J = 244.8 Hz), 156.1, 155.2, 141.4, 134.7, 132.0 (d, $J = 7.9$ Hz), 131.0 (d, $J = 8.7$ Hz), 130.3, 128.3 $(d, J = 15.8 \text{ Hz})$, 127.0 $(d, J = 11.8 \text{ Hz})$, 125.0, 123.6, 121.0, 117.6 (d, J) $= 21.8$ Hz), 116.8 (d, J = 22.2 Hz), 52.1, 20.1, 18.7; MS (E.I.), m/z : $[M]^{•+}$ 356.1, $[M - CH_3CO_2]^{•+}$ 297.1; HRMS (EI), m/z : $[M]^+$ calculated for $C_{20}H_{18}F_2N_2O_2$: 356.1336, found 356.1334.

Methyl (E)-3-((E)-8-(((E)-3,4-Dihydronaphthalen-1(2H)-ylidene) hydrazono)-5,6,7,8-tetrahydronaphthalen-1-yl)acrylate 3o. Yellow solid, 27.1 mg, 73% yield; (PE/EtOAc 8:1, R_f 0.57); ¹H NMR (300 MHz, DMSO- d_6), δ (ppm): 8.36 (d, J = 15.6 Hz, 1H), 8.19 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 6.9 Hz, 1H), 7.23–7.41 (m, 5H), 6.30 (d, J = 15.9 Hz, 1H), 3.72 (s, 3H), 2.75−2.83 (m, 8H), 1.76−1.87 (m, 4H); 13C NMR (126 MHz, DMSO-d6), ^δ (ppm): 167.4, 159.3, 158.2, 148.1, 143.1, 141.3, 134.6, 133.0, 132.7, 130.3, 130.1, 129.5, 129.2, 127.3, 126.7, 125.6, 116.9, 51.8, 30.6, 29.6, 28.6, 27.9, 22.3, 22.0; MS (E.I.), $m/z: [M]^{•+}$ 372.2, $[M - CH_3CO_2]^{•+}$ 313.1; HRMS (EI), $m/z: [M]^{+}$ calculated for $C_{24}H_{24}N_2O_2$: 372.1838, found 372.1839.

Methyl (E)-3-(2-((E)-((Diphenylmethylene)hydrazono)(phenyl) methyl)phenyl)acrylate 3p. Yellow solid, 26.6 mg, 60% yield; (PE/ EtOAc 8:1, R_f 0.52); ¹H NMR (300 MHz, DMSO- d_6), δ (ppm): 8.02−8.05 (m, 1H), 7.49−7.55 (m, 5H), 7.22−7.43 (m, 13H), 7.14− 7.17 (m, 1H), 6.64 (d, $J = 15.9$ Hz, 1H), 3.63 (s, 3H); ¹³C NMR (126 MHz, DMSO-d6), δ (ppm): 166.8, 161.2, 160.3, 142.2, 137.7, 137.6, 137.2, 135.3, 131.9, 131.0, 130.72, 130.68, 129.5, 129.1, 128.8, 128.54, 128.48, 127.9, 127.1, 119.7, 52.0; MS (E.I.), m/z: [M]•⁺ 444.1, [M − CH_3CO_2 ^{*} 385.1; HRMS (EI), m/z : [M]⁺ calculated for $C_{30}H_{24}N_2O_2$: 444.1838, found 444.1834.

Ethyl (E)-3-(2-((E)-1-(((E)-1-Phenylethylidene)hydrazono)ethyl) phenyl)acrylate 3q. Yellow solid, 24.9 mg, 75% yield; (PE/EtOAc 8:1, R_f 0.58); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 8.07 (d, J = 16.0 Hz, 1H), 7.94−7.95 (m, 2H), 7.86 (d, J = 8.0 Hz, 1H), 7.64 (dd, J = 8.0, 1.0 Hz, 1H), 7.53 (td, J = 7.5, 1.5 Hz, 1H), 7.47−7.50 (m, 4H), 6.52 (d, J = 16.0 Hz, 1H), 4.19 (q, J = 7.0 Hz, 2H), 2.30 (s, 3H), 2.29 (s, 3H), 1.25 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 166.7, 160.0, 158.8, 144.4, 140.4, 138.2, 132.9, 130.4, 129.6, 129.1, 128.9, 128.0, 127.1, 119.0, 60.5, 18.9, 15.4, 14.7. One signal is missing due to overlap; MS (E.I.), m/z : [M]^{**} 334.2, [M – $CH_3CH_2CO_2$ ^{*} 261.2; HRMS (EI), m/z : $[M]$ ⁺ calculated for $C_{21}H_{22}N_2O_2$: 334.1681, found 334.1687.

2-Methoxyethyl (E)-3-(2-((E)-1-(((E)-1-Phenylethylidene) hydrazono)ethyl)phenyl)acrylate 3r. Yellow solid, 26.4 mg, 73% yield; (PE/EtOAc 8:1, R_f 0.54); ¹H NMR (500 MHz, DMSO- d_6), δ (ppm): 8.12 (d, J = 16.0 Hz, 1H), 7.97−7.99 (m, 2H), 7.91 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.51−7.59 (m, 5H), 6.58 (d, J =

16.0 Hz, 1H), 4.30 (t, J = 4.5 Hz, 2H), 3.61 (t, J = 4.5 Hz, 2H), 3.30 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6), δ (ppm): 166.7, 160.0, 158.9, 144.8, 140.4, 138.2, 132.8, 130.44, 130.40, 129.6, 129.1, 128.9, 128.1, 127.1, 118.7, 70.3, 63.6, 58.5, 18.9, 15.4; MS (E.I.), m/z : [M]^{*+} 364.2, [M – CH₃OC₂H₄CO₂]^{*+} 261.2; HRMS (EI), m/z : [M]⁺ calculated for C₂₂H₂₄N₂O₃: 364.1787, found 364.1785.

Dimethyl 3,3′-(((1E,1′E)-Hydrazine-1,2-diylidenebis(ethan-1-yl-1 ylidene))bis(5-methyl-2,1-phenylene))(2E,2′E)-diacrylate 3s. Yellow solid, 29.7 mg, 69% yield; (PE/EtOAc 8:1, R_f 0.49); ¹H NMR (300 MHz, DMSO- d_6), δ (ppm): 8.08 (d, J = 15.9 Hz, 2H), 7.68 (s, 2H), 7.56 (d, J = 7.8 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 6.51 (d, J = 15.9 Hz, 2H), 3.71 (s, 6H), 2.39 (s, 6H), 2.29 (s, 6H); 13C NMR (76 MHz, DMSO- d_6), δ (ppm): 167.0, 160.7, 144.8, 139.3, 137.5, 132.6, 131.0, 129.1, 128.4, 118.3, 51.8, 21.1, 19.0; MS (E.I.), m/z: [M]•⁺ 432.2, [M $-$ CH₃CO₂]^{•+} 373.1; HRMS (EI), m/z : [M]⁺ calculated for $C_{26}H_{28}N_2O_4$: 432.2049, found 432.2041.

Mechanistic Experiments. The operation of mechanistic experiments including kinetic isotopic effect, reversibility studies, competition experiment, and catalysis of rhodacycle intermediate c1, described in the Supporting Information, is similar to the operation of synthesizing 3a with some different reagents.

■ AS[SOCIATED](http://pubs.acs.org/doi/suppl/10.1021/acs.joc.5b01154/suppl_file/jo5b01154_si_001.pdf) [CONTEN](http://pubs.acs.org/doi/suppl/10.1021/acs.joc.5b01154/suppl_file/jo5b01154_si_001.pdf)T

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b01154.

Experimental procedures, crystallographic data for [compound](http://pubs.acs.org) $c1$, and ${}^{1}H$ and ${}^{13}C$ NMR spectra for substrates and products (PDF)

Crystallographic data for compound c1 (CIF)

■ AUTHOR I[N](http://pubs.acs.org/doi/suppl/10.1021/acs.joc.5b01154/suppl_file/jo5b01154_si_001.pdf)FORMATION

Corresponding Author

*E-mail: jinz@nju.edu.cn.

Notes

The auth[ors declare no c](mailto:jinz@nju.edu.cn)ompeting financial interest.

■ ACKNOWLEDGMENTS

J.Z. gratefully acknowledges support from the National Natural Science Foundation of China (21425415, 21274058) and the National Basic Research Program of China (2015CB856303, 2011CB935801).

■ REFERENCES

(1) (a) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc. 2010, 132, 12862. (b) Liu, X.; Hii, K. K. J. Org. Chem. 2011, 76, 8022. (c) Yang, F.; Song, F.; Li, W.; Lan, J.; You, J. RSC Adv. 2013, 3, 9649. (d) Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A. V. Org. Lett. 2012, 14, 728. (e) Manikandan, R.; Jeganmohan, M. Org. Lett. 2014, 16, 912. (f) Padala, K.; Jeganmohan, M. Chem. Commun. 2013, 49, 9651. (g) Kim, H.; Park, J.; Kim, J. G.; Chang, S. Org. Lett. 2014, 16, 5466. (h) Joliton, A.; Carreira, E. M. Org. Lett. 2013, 15, 5147. (i) Li, J.; Yang, S.; Jiang, H.; Wu, W.; Zhao, J. J. Org. Chem. 2013, 78, 12477. (j) Ackermann, L.; Gschrei, C. J.; Althammer, A.; Riederer, M. Chem. Commun. 2006, 1419. (k) Moore, J. N.; Laskay, N. M.; Duque, K. S.; Kelley, S. P.; Rogers, R. D.; Shaughnessy, K. H. J. Organomet. Chem. 2015, 777, 16.

(2) For selected examples of rhodium-catalyzed directed sp^2 C−H activation, see: (a) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326. (b) Cajaraville, A.; López, S.; Varela, J. A.; Saá, C. Org. Lett. 2013, 15, 4576. (c) Zhang, G.; Yu, H.; Qin, G.; Huang, H. Chem. Commun. 2014, 50, 4331. (d) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (e) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (f) Zhao, D.; Shi, Z.; Glorius, F. Angew. Chem., Int.

The Journal of Organic Chemistry Article 30 and 200 an

Ed. 2013, 52, 12426. (g) Yu, S.; Wan, B.; Li, X. Org. Lett. 2013, 15, 3706. (h) Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 11846. (i) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024. (j) Liu, B.; Fan, Y.; Gao, Y.; Sun, C.; Xu, C.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 468. (k) Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X. J. Am. Chem. Soc. 2015, 137, 1623. (l) Qin, X.; Sun, D.; You, Q.; Cheng, Y.; Lan, J.; You, J. Org. Lett. 2015, 17, 1762. (m) Park, S. H.; Kim, J. Y.; Chang, S. Org. Lett. 2011, 13, 2372. (n) Li, X.; Dong, Y.; Qu, F.; Liu, G. J. Org. Chem. 2015, 80, 790.

(3) For leading reviews on C−H bond activation based on directing groups with " $C=N$ " as substructure, see: (a) Yu, S.; Wan, B.; Li, X. Org. Lett. 2013, 15, 3706. (b) Yu, S.; Li, X. Org. Lett. 2014, 16, 1220. (c) Parthasarathy, K.; Cheng, C.-H. J. Org. Chem. 2009, 74, 9359. (d) Zhang, X.; Chen, D.; Zhao, M.; Zhao, J.; Jia, A.; Li, X. Adv. Synth. Catal. 2011, 353, 719. (e) Ng, K.-H.; Zhou, Z.; Yu, W.-Y. Org. Lett. 2012, 14, 272. (f) Jijy, E.; Prakash, P.; Shimi, M.; Saranya, S.; Preethanuj, P.; Pihko, P. M.; Varughese, S.; Radhakrishnan, K. V. Tetrahedron Lett. 2013, 54, 7127. (g) Chuang, S.-C.; Gandeepan, P.; Cheng, C.-H. Org. Lett. 2013, 15, 5750. (h) Huang, X.-C.; Yang, X.-H.; Song, R.-J.; Li, J.-H. J. Org. Chem. 2014, 79, 1025. (i) Tsai, A. S.; Brasse, M.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2011, 13, 540. (j) Zhang, Y.; Wu, Q.; Cui, S. Chem. Sci. 2014, 5, 297. (k) Ng, K.-H.; Zhou, Z.; Yu, W.-Y. Chem. Commun. 2013, 49, 7031. (l) Zhou, B.; Du, J.; Yang, Y.; Li, Y. Org. Lett. 2013, 15, 2934. (m) Shibata, K.; Chatani, N. Org. Lett. 2014, 16, 5148.

(4) (a) Yasuda, T.; Sakai, Y.; Aramaki, S.; Yamamoto, T. Chem. Mater. 2005, 17, 6060. (b) Achelle, S.; Ple, N.; Kreher, D.; Mathevet, F.; Turck, A.; Attias, A. Heterocycles 2008, 75, 357. (c) Gao, Z. Q.; Mi, B. X.; Tam, H. L.; Cheah, K. W.; Chen, C. H.; Wong, M. S.; Lee, S. T.; Lee, C. S. Adv. Mater. 2008, 20, 774. (d) Fang, Y.; Li, Y.; Wang, S.; Meng, Y.; Peng, J.; Wang, B. Synth. Met. 2010, 160, 2231. (e) Kasnar, B.; Wise, D. S.; Kucera, L. S.; Drach, J. C.; Townsend, L. B. Nucleosides Nucleotides 1994, 13, 459. (f) Huang, Q.; Qian, X.; Song, G.; Cao, S. Pest Manage. Sci. 2003, 59, 933. (g) Asif, M.; Singh, A.; Siddiqui, A. Med. Chem. Res. 2012, 21, 3336. (h) Han, W.; Zhang, G.; Li, G.; Huang, H. Org. Lett. 2014, 16, 3532. (i) Lim, Y.-G.; Koo, B. T. Tetrahedron Lett. 2005, 46, 385.

(5) (a) De Martino, G.; Edler, M. C.; La Regina, G.; Coluccia, A.; Barbera, M. C.; Barrow, D.; Nicholson, R. I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 947. (b) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2, 2019. (c) Gangjee, A.; Zeng, Y.; Talreja, T.; McGuire, J. J.; Kisliuk, R. L.; Queener, S. F. J. Med. Chem. 2007, 50, 3046. (d) Joseph, P. J. A.; Priyadarshini, S.; Kantam, M. L.; Sreedhar, B. Tetrahedron 2013, 69, 8276. (e) Ham, J.; Yang, I.; Kang, H. J. Org. Chem. 2004, 69, 3236. (f) Davydov, D. V.; Beletskaya, I. P. Russ. Chem. Bull. 2003, 52, 278. (g) Gendre, F.; Yang, M.; Diaz, P. Org. Lett. 2005, 7, 2719.

(6) (a) Sinha, U. C. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1970, 26, 889. (b) Chen, G. S.; Anthamatten, M.; Barnes, C. L.; Glaser, R. J. Org. Chem. 1994, 59, 4336.

(7) For reviews on electrophilic aromatic substitution (EAS), see: (a) Nedd, S.; Alexandrova, A. N. Phys. Chem. Chem. Phys. 2015, 17, 1347. (b) Juribašić, M.; Budimir, A.; Kazazić, S.; Ćurić, M. Inorg. Chem. 2013, 52, 12749. (c) Solomon, E. I.; Light, K. M.; Liu, L. V.; Srnec, M.; Wong, S. D. Acc. Chem. Res. 2013, 46, 2725.

(8) For studies on reaction involving a rate-limiting step, see: (a) Gómez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857. (b) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1986, 108, 4814. (c) Madix, R. J.; Telford, S. G. Surf. Sci. 1992, 277, 246. (d) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066.

(9) (a) Li, L.; Brennessel, W. W.; Jones, W. D. Organometallics 2009, 28, 3492. (b) Jun, C.-H. J. Organomet. Chem. 1990, 390, 361. (c) Wiedemann, S. H.; Lewis, J. C.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2006, 128, 2452.

(10) For studies on reductive elimination, see: (a) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1998, 17, 1383. (b) Macgregor, S. A.; Neave, G. W.; Smith, C. Faraday Discuss. 2003, 124, 111. (c) Moreau, X.; Campagne, J. M.; Meyer, G.; Jutand, A. Eur. J. Org. Chem. 2005, 2005, 3749.

-
- (11) Daub, G. H.; Cannizzo, L. F. J. Org. Chem. 1982, 47, 5034.
- (12) Han, W.; Zhang, G.; Li, G.; Huang, H. Org. Lett. 2014, 16, 3532.
- (13) Manikannan, R.; Muthusubramanian, S. J. Heterocycl. Chem. 2011, 48, 671.
- (14) Safari, J.; Gandomi-Ravandi, S. Synth. Commun. 2011, 41, 645.